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Outline

I introduce extensions to curvilinear component analysis (CLCA) and curvilinear
distance analysis (CLDA) that can be used for manifold learning and nonlinear
dimensionality reduction. They add flexibility to CLCA and CLDA.

Outline:

■ Idea and purpose of manifold learning
■ CLCA and CLDA
■ Extensions to CLCA and CLDA
■ A Quasi-MM algorithm
■ Example: Visualizing topic models
■ Conclusion
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Manifold Learning

Manifold learning (aka nonlinear dimension reduction) refers to methods that
try to unfold a (high-dimensional) manifold in an unsupervised setting.

■ Underlying assumption: Data exist on (or close to) a submanifold embedded in a
higher-dimensional space.

■ Goal: Extract the submanifold and remove the unnecessary dimensions
(dimensionality reduction).

■ Side effect: Represent and visualize the data on the manifold in a (usually) Euclidean
space.

Since a manifold is a topological space that locally resembles Euclidean space
near each point, this is done by trying to represent the local neighbourhood
accurately at expense of the global structure of the manifold.
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Example Manifolds

Some examples:

■ Points on a sphere sampled along a Clelia curve (c = 1/6).
■ Points near a U-fold with increasing noise towards the edges.
■ Two interlocking rings.

For all of them the goal in manifold learning is to represent the points as a
(Euclidean) embedding that respects local structure and removes global
structure.
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Methods – I

There exist a number of techniques that try to achieve this, e.g., Kernel
Methods (Kernel PCA), neural networks (self-organizing map, autoencoders),
spectral methods (Laplacian and Hessian eigenmaps), cool kid stuff (t-SNE,
UMAP).

We are specifically interested in methods that are proximity preserving and
based around multidimensional scaling (MDS). Those that have locality
features for manifold learning are:
■ Elastic scaling (McGee, 1966)
■ Sammon mapping (Sammon, 1969)
■ CLCA (Desmartines and Herault, 1994)
■ Isomap (Tenenbaum et al., 2000)
■ CLDA (Lee et al., 2004)
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Methods – II

We developed extensions to CLCA and CLDA (eCLCA, eCLDA, eCLPCA, eCLPDA)
that incorporate any or all of

1. Static weights

2. Linear, affine and smooth montonic proximity transformations (optimal scaling)

3. Power transformations of the fitted distances (map to curved Euclidean space)

That way we can simultaneously generalize local methods of MDS and add
locality capabilities to global MDS methods, e.g.,
■ bring the Isomap idea to Kruskal’s MDS framework
■ incorporate different scale levels of the proximity measure in CLCA, CLDA
■ allow to combine Sammon mapping and elastic scaling with CLCA/CLDA
■ give manifold learning versions of ALSCAL, POST-MDS and MULTISCALE
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Curvilinear Component/Distance Analy-
sis – I

We are given an n × n matrix of symmetric proximities δj of the n points. In
CLCA they are Euclidean distances and in CLDA geodesic distances (distance
along the manifold as in Isomap).

We approximate these proximities by pairwise fitted distances dj(X) where X
(the configuration) is n × p. Usually the fitted distance is Euclidean and p is
small.

Approximation is based on a badness-of-fit criterion σ(δj, dj(X)|τ) and we look
for

rgmin
X

σ(δj, dj(X)|τ) =
∑

<j

�

δj − dj(X)
�2
1

�

dj(X) ≤ τ
�

the X that minimizes the approximation error. Note that any , j for which
dj(X) > τ is ignored which gives the local flavour. If τ >mx(dj(X)) this is
equivalent to ratio MDS.
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Extended Curvilinear Compo-
nent/Distance Analysis – I

We can extend CLCA/CLDA in three ways:

1. Adding static finite weights j:
∑

<jj
�

δj − dj(X)
�2
1

�

dj(X) ≤ τ
�

(incorporates

Sammon mapping and elastic scaling with j = δ−1j or j = δ−2j respectively, any

other weighting also possible).

2. Optimal scaling: Instead of δj we use disparities δ̂j = ƒ (δj) with ƒ : R≥0 → R≥0. These

transformations are under the constraint that δ̂j ≥ 0:

Ratio: δ̂j = bδj (linear transformation)

Interval: δ̂j =  + bδj (affine transformation)

Splines: δ̂j =
∑

z
z z(δj|o, ) (smooth monotonic nonlinear transformation via I-spline)
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Extended Curvilinear Compo-
nent/Distance Analysis – I

We can extend CLCA/CLDA in three ways:

3. Power transformations for dj(X): We can fit power functions of the Euclidean distance

with exponent κ > 0, so d̂j(X) = dj(X)κ. This maps to a convex or concave space
which can be useful to remove excess curvature of the manifold. This can also express
MDS methods like, e.g., ALSCAL (κ = 2) and MULTISCALE (κ→ 0) and POST-MDS.

With ̂j =jhj(X) and hj(X) = 1

�

d̂j(X) ≤ τ
�

this combines to an instance of
Stress for flexible MDS (Rusch et al. 2021, 2023)

σ(δj, dj(X)|τ, κ,j) =
∑

<j

̂j

�

δ̂j − d̂j(X)
�2
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Extended Curvilinear Compo-
nent/Distance Analysis – II

As the most general specific instance of our extensions we have extended
Curvilinear Power Component Analysis (eCLPCA):

rgmin
X

σeCLPCA(δj, dj(X)|τ, κ,j) =
∑

<j

j
�

ƒ (δj) − dj(X)κ
�2
1

�

dj(X)κ ≤ τ
�

Special cases include:

■ If δj is the geodesic distance we have eCLPDA.
■ If κ = 1 this is eCLCA (Euclidean input distance) or eCLDA (geodesic proximity).
■ If ƒ (·) is the ratio transformation, we have CLCA (Euclidean input distance) or CLDA

(geodesic proximity).
■ Sammon and elastic scaling-type weighting with j = δνj and ν ≤ 0.

■ Different MDS methods with τ >mx(d̂j(X)) or local versions of MDS with setting τ.

Manifold Learning with Extensions to CLCA and CLDA 2024-07-09 Slide 10



Optimization with Q-SMACOF – I

For optimization we developed an algorithm for eCLPCA that works any input
proximity, a Quasi-MM algorithm called Q-SMACOF. Nutshell:

■ Let ̂j :=j1
�

dj(X)κ ≤ τ
�

. In iteration k, we treat ̂j as static.
■ Use surrogate majorization function for the alternating least squares objectives

ϑ(k) = rgmin
ϑ

σκ
�

ϑ,X(k)|Ŵ
�

X(k+1) = rg min
ec(X)⊤ec(X)=1

σκ
�

ϑ(k), X|Ŵ
�

over all X in Rn×p and for all values of κ > 0.
■ Minimize the majorization function in each iteration step k + 1 (MM principle).
■ At each iteration k we re-calculate the 1

�

dj(X)κ ≤ τ
�

which may possibly change ̂j.

■ At each iteration k do optimal scaling in an inner optimization step given ̂(k)j .
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Optimization with Q-SMACOF – II

For optimization we developed an algorithm for eCLPCA that works any input
proximity, a Quasi-MM algorithm called Q-SMACOF.

■ eCLPCA objective is not smooth due in X to the 1

�

dj(X)κ ≤ τ
�

.
■ The dynamic nature of ̂j can introduce jump discontinuities in the optimization path

and thus a possible increase of the objective (also in the CLCA algorithm)
■ The algorithm minimizes the objective but is only converging to a stationary point

once the ̂j does no longer change.
■ The larger τ is, the more quickly the ̂j stabilizes.

That is why we do not necessarily have monotone convergence of MM (hence
Quasi-MM).
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Self-organization

CLCA is proposed as a self-organizing ANN, which uses a decreasing sequence
of τs to automatize the use. We can adapt this to our situation.

We start with any τs, τs >min(d̂j(X)) and fit the eCLPCA variant of choice with
τs. Then:

1. Use a new τt < τs, τt >min(d̂j(X)) and fit the model with current τt with the solution
for τs as the starting configuration.

2. Repeat this for a strictly decreasing sequence of τs.

3. Use the optimal X obtained for the smallest τt.

This is self-organizing as it gradually refines the solution for increasingly
smaller distances. Distances that are set to 0 for τs are also set to 0 for τt and
with every epoch, the configuration is rearranged based on an increasingly
narrower subset of observations.
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Toy Example: Sphere

For the sphere data, I fit a ratio MDS, a ratio eCLCA model with τ = 0.02
(equivalent to standard CLCA), a spline eCLPCA model with κ = 0.75, τ = 0.05
(the I-spline has degree of 2 and 2 interior knots) and a ratio eCLPCA model for
Æ

δj with κ = 0.5 and τ = 0.15 and Sammon weighting (i.e., j = δ−1j ).
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Toy Example: Sphere

MDS

D1

D
2

ratio CLCA

D1

D
2

spline eCLPCA with κ=0.75

D1

D
2

Sammon eCLPCA with κ=0.5,λ=0.5

D1

D
2
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Toy Example: U-fold

Here we fit ratio MDS, the self-organizing versions of standard CLCA and a ratio
eCLPCA with δ2j , κ = 2 starting with τs = 0.5 and 0.1 respectively.
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Toy Example: U-fold

MDS ratio eCLCA ratio eCLPCA with κ,λ=2
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Toy Example: 2 Rings

I fit two models: CLDA with k = 58, τ = 0.03 and an interval eCLPDA with
k = 58, κ = 0.5, τ = 0.03κ.
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Toy Example: 2 Rings

MDS CLDA interval eCLPDA with κ=0.5
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Real Example: Topic modeling – I

I revisit Sablica et al. (2025) results.

■ Data are the abstracts of the 129 scientific papers of Fritz Leisch.
■ Abstracts were embedded on a hypersphere with 256 dimensions via OpenAI’s

text-embedding-3-large model
■ Model-based clustering with spherical Cauchy distributions gave an 8 cluster solution.

We visualize and explore this with a number of eCLCA/eCLDA versions.
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Real Example: Topic modeling - II

Specifically we look at

1. Ratio MDS with cosine input distance (our reference)

2. Standard CLCA (uses Euclidean input distance)

3. Standard CLDA (geodesic Euclidean input distance)

4. Spline eCLCA with cosine input distance

5. Interval eCLDA with cosine input distance (geodesic)

6. Sammon ratio CLPDA with κ = 0.5 and cosine input distance (geodesic)

The geodesic distances (the shortest path between poinst over the weighted
neighbourhood graph) were used with either Euclidean distances (3) or cosine
distance (4, 5, 6) for the edge weights. The neighbourhood graph was
calculated for k = 10 nearest neighbours.
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Real Example: Topic modeling – III

ratio MDS (cosine)
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D
2
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Example: Topic Model – Exploration

Some of the observations we may make:

■ Geodesic cosine input distance seems to work best
■ Results supports the clustering relatively well
■ Sammon eCLPDA allows visualisation most aligend with the clustering result, also

interval CLDA, CLDA and perhaps spline eCLCA
■ Cluster 1 seems to generally be well separated in all but MDS
■ Cluster 3 and Cluster 5 look connected when using geodesic distances, also Cluster 2,

Cluster 7, Cluster 8
■ For Cluster 2, Cluster 6, Cluster 7, Cluster 8 it looks as if they overlap or are

density-connected in every setup. Sammon eCLPDA suggests nested clusters.
■ Cluster 4 “Environmental and Biological Effects of Agrochemicals” seems to be

difficult as its own cluster (low cohesion, broken-up)
■ Some abstracts do not fit neatly to the topics → manual inspection
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Software

We have implemented these functions R in the package smacofx.

■ Fitting functions: eCLCA, eCLDA, eCLPCA, eCLPDA. Self-organizing versions are prefixed
with so_, so e.g., so_eCLCA.

■ Standard S3 Generics: print, summary, plot, coef (gives the parameters)
■ Plotting: Configuration plot, Shepard plot, bubbleplot, stress-decomposition plot,

residual plot, transformation plot (argument plot.type), Biplots (biplotmds)
■ Uncertainty quantification: MDS jackknife (jackmds), MDS bootstrap (bootmds),

permutation test (permtest)
■ Local Minima Diagnostic: Effect of starting configuration (icGenExplore), different

starting configuration (multistart)

Manifold Learning with Extensions to CLCA and CLDA 2024-07-09 Slide 24



Conclusions

We introduced extensions to curvilinear component analysis and curvilinear
distance analysis for manifold learning. These extensions cover:

■ Optimal scaling with linear, affine, spline transfromations
■ Inclusion of static weighting (enabling Sammon or elastic scaling type weighting, and

more)
■ Power transformations for the configuration distances
■ Manual specification of τ or self-organization

To use these new variants we developed

■ A Q-SMACOF algorithm for optimization
■ Software in R that can utilize the object-oriented approach and post-fit infrastructure

of the Smacofverse.

These extensions allow for more flexible learning and exploration of data that
exist on or near a manifold.
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Real Example: Topic modeling - UMAP

Comparison with UMAP with (neighbours=10)
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Majorization Function - I

We write hj = 1
�

dj (X)
κ ≤ τ
�

and ̂j =jhj . We treat hj as static, then we can derive a majorizing function of

σκ (X|Ŵ) =
∑

<j
̂j
�

δ̂j − dj (X)
κ
�2

(1)

all X in Rn×p and for all values of κ > 0. The disparities are scaled as
∑

<j ̂j δ̂
2
j = 1.

Since Euclidean embeddings are scale invariant we have

min
X

σκ (X|Ŵ) = min
ϑ≥0

min
ec(X)⊤ec(X)=1

σκ
�

ϑ,X|Ŵ
�

This can be solved via an alternating least squares algorithm with first solving over ϑ for fixed X and then over X for fixed ϑ with the steps

ϑ(k) = rgmin
ϑ

σκ
�

ϑ,X(k) |Ŵ
�

(2)

X(k+1) = rg min
ec(X)⊤ec(X)=1

σκ
�

ϑ(k) , X|Ŵ
�

(3)

The minimum (2) for fixed X is attained at

ϑκ =
ρκ (X|Ŵ)

ηκ (X|Ŵ)

which means for (3), one needs to majorize

σκ
�

X, ϑ|Ŵ
�

= 1 − 2ϑκρκ (X|Ŵ) + ϑ2κηκ (X|Ŵ) (4)

over ec(X)⊤ec(X) = 1 and ϑκ = ρκ (X|Ŵ)/ηκ (X|Ŵ) fixed at its current value.Manifold Learning with Extensions to CLCA and CLDA 2024-07-09 Slide 28



Majorization Function - II

We have a MM algorithm update for X of the form of multiplying the current X(k) with the n × n matrix Mκ (X|Ŵ) for iteration k + 1 as

X(k+1) = Mκ
�

X(k) |Ŵ
�

X(k) (5)

under the condition ||Mκ (X(k) |Ŵ)X(k) || = 1.

The form of Mκ (X|Ŵ) differs based on the value of κ. For the case of κ > 1 we have

Mκ (X|Ŵ) = Bκ (X|Ŵ) −
ρκ (X|Ŵ)

ηκ (X|Ŵ)

�

Cκ (X|Ŵ) − ζκ (X|Ŵ)n
�

(6)

and for the case of 0 < κ ≤ 1 we have

Mκ (X|Ŵ) =
�

Bκ (X|Ŵ) − βκ (X|Ŵ)n
�

−
ρκ (X|Ŵ)

ηκ (X|Ŵ)

�

Cκ (X|Ŵ) − γκ (X|Ŵ)n
�

.

with n denoting the n × n identity matrix.
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Majorization Function - III

The terms used are:
■ Three scalar valued terms βκ (X|Ŵ) = (κ − 1)

∑

<j ̂j δ̂j2
κ/2, ζκ (X|Ŵ) = (2κ − 1)

∑

<j ̂j4
κ/2 and γκ (X|Ŵ) = 2

∑

<j ̂jdj (X)
2(κ−1)

■ The n × n matrix Bκ (X|Ŵ) that has elements bκ (X|Ŵ) =
∑

j ̂j δ̂jdj (X)
κ−2 in the main diagonal and bκ (X|Ŵ)j = −j δ̂jdj (X)

κ−2 if  ̸= j

■ The n × n matrix Cκ (X|Ŵ) that has elements cκ (X|Ŵ) =
∑

j ̂jdj (X)
2κ−2 in the main diagonal and cκ (X|Ŵ)j = −̂jdj (X)

2κ−2 if  ̸= j.
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Q-SMACOF Algorithm

Let r := κ/2 and kmx be the maximum iteration number.
1. Set k = 0. Set X(0) to an initial X. This can be the configuration of a Torgerson scaling.

2. Set ̂(0)j (d̂j(X
(0))) = 0 if dj(X(0))κ > τ.

3. Optimally scale the δj by calculating δ̂j = ƒ (δλj ) for fixed distances d̂j(X(0)).

4. Compute initial σr(X(0); Ŵ(0)(D̂(X(0))).
5. Repeat until convergence

5.1 Compute Mr
�

X(k); Ŵ(D̂(X(k))
�

.

5.2 Update X(k+1) = Mr
�

X(k); Ŵ(D̂(X(k)))
�

X(k).
5.3 Compute d2rj (X

(k+1)).

5.4 Set ̂(k+1)j (d̂j(X(0))) = 0 if dj(X(k+1))κ > τ.

5.5 Optimally scale the δj by calculating δ̂j = ƒ (δλj ) for fixed distances d̂j(X(k)).

5.6 Compute σr
�

X(k+1);W(k+1)(D̂(X(k+1)))
�

.

5.7 Stop if |σr
�

X(k+1);W(k+1)
�

− σr
�

X(k);W(k)(D̂(X(k+1)))
�

| < ε or k > kmx.
5.8 Set k := k + 1Manifold Learning with Extensions to CLCA and CLDA 2024-07-09 Slide 31
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