

Structure Optimized Proximity Scaling (STOPS)

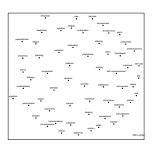
A Framework for Hyperparameter Selection in Multidimensional Scaling

Slide Zero

This is joint work with Kurt Hornik (WU) and Patrick Mair (Harvard)

Motivation: Mental States

- Tamir et al. (2016) investigated how our brain represents the mind of others (social cognition) by correlation of activation patterns of fMRI brain scans
 - For 20 individuals and 60 mental states
 - Task was to choose for a given mental state the one out of two situations most likely to induce the state in others
 - In supplement the authors invite readers to explore the neural similarity of states directly by means of Multidimensional Scaling (MDS)
- We average correlation-derived dissimilarities over the 20 individuals.



- We find lack of structure in MDS (Spherical Embedded Projection Phenomenon)
- Characterized by objects arranged on a disk or sphere and not uncommon
- \blacksquare Appears when the observed proximities δ_{ij} have little variability

Multidimensional Scaling

The STRESS objective function with (transformed) distances $d_{ij}^*(X)$, (transformed) proximities δ_{ii}^* and finite weights w_{ii}^* is

$$\sigma(X) = \sum_{i < j} w_{ij}^* \left[\delta_{ij}^* - d_{ij}^*(X) \right]^2$$

which is minimized to find the configuration X

$$\arg\min_X \sigma(X)$$

- MDS provides an optimal map into continuous space \mathbb{R}^M (objective 1)
- We may also be interested in some structural appearance, e.g., clusters or circumplex (objective 2).
- It can happen that what is optimal for objective 1 is not very useful for objective 2

- Structure often becomes clearer by using transformations $\delta_{ii}^* = f_{ij}(\delta_{ij})$ and $d_{ij}(X)^* = g_{ij}(d_{ij}(X))$ and weights w_{ii}^*
- Many MDS variants are a special case of this general formulation, e.g.,
 - Metric MDS: $g_{ij}(a) = a$, $f_{ij}(a) = a$, Sammon mapping: $\mathbf{w}_{ii}^* = \delta_{ii}^{-1}$
 - Multiscale: $f_{ii}(a) = g_{ii}(a) = \log(a)$
 - POST-MDS: $g_{ii}(a) = a^{\kappa}$, $f_{ij}(a) = a^{\lambda}$, $w_{ii}^* = w_{ii}^{\nu}$, ALSCAL: $\kappa = \lambda = 2$
 - LMDS: Box-Cox transformations for $g_{ii}(\cdot)$, $f_{ii}(\cdot)$, Isomap: $g_{ii}(\cdot)$ isometric distance
- Often transformations are parametrized by a hyperparameter vector θ , so $\delta_{ii}^* = f_{ij}(\delta_{ij}; \theta)$ and $d_{ii}^* = g_{ij}(d_{ij}; \theta)$
- It is not always clear what is the right θ .

Structure Optimized Proximity Scaling

Our suggestion is Structure Optimized Proximity Scaling (STOPS).

- Idea: Select the parameters for the transformations (θ) in a principled fashion by fit and structure considerations
- This offers a conceptual and computational framework for hyperparameter selection in MDS variants
- Building blocks:
 - lacktriangle heta-parametrized target function for misfit
 - Statistics measuring configuration structure (structuredness indices)
 - Combination of misfit and structure
 - Algorithm for optimization

STOPS - I

We have the target function that measures misfit (e.g., Stress)

$$\sigma(X,\theta) = L(\Delta^*, D^*(X), \theta)$$

which we minimize to find the configuration X for a θ

$$X(\theta) = \arg\min_{X} \sigma(X, \theta)$$

- $X(\theta)$ has some structural appearance (C-Structuredness).
- \blacksquare C-Structuredness changes with different θ

STOPS - II

- Capture *P* structures in $X(\theta)$ by indices $I_p(X(\theta); \gamma), p = 1, ..., P$.
- **Combine** $\sigma(X(\theta), \theta)$ and $I_p(X(\theta); \gamma)$ to stoploss $(X(\theta), \vartheta; \Delta)$
- Two STOPS models
 - Additive STOPS (aSTOPS)

$$\mathsf{stoploss}(\mathsf{X}(\theta),\vartheta;\Delta) = \mathsf{v}_0 \cdot \sigma(\mathsf{X}(\theta),\theta) + \sum_{p=1}^P \mathsf{v}_p \mathsf{I}_p(\mathsf{X}(\theta);\gamma)$$

■ Multiplicative STOPS (mSTOPS)

$$\mathsf{stoploss}(\mathsf{X}(\theta),\vartheta;\Delta) = \sigma(\mathsf{X}(\theta),\theta)^{\mathsf{v}_0} \cdot \prod_{p=1}^{P} I_p(\mathsf{X}(\theta);\gamma)^{\mathsf{v}_p}$$

 v_0 .. stressweight (redundant), $v_1,...,v_P$... structuredness weights, γ ... (optional) metaparameters for structuredness indices; $\vartheta \subseteq \{\theta,v_0,...,v_k\}_{\varnothing > 0}$

Structures and Indices

- C-Structuredness indices capture essence of a particular structure in a configuration. Some examples:
 - C-Association: Pairwise nonlinear association between principal axes (pairwise maximal maximum information coefficient; Reshef et al. 2011)
 - C-Clusteredness: A clustered appearance (normed OPTICS Cordillera; Rusch et al., 2016)
 - C-Complexity: Complexity of the functional relationship between any principle axes (pairwise maximal minimum cell number; Reshef et al. 2011)
 - C-Dependence: Random vectors of projections onto the axes are stochastically dependent (distance correlation; Szekely et al., 2007)
 - C-Manifoldness: Points lie close to a smooth submanifold (maximal correlation; Sarmanov, 1958)

Optimization-I

We need to find

$$\underset{\vartheta}{\operatorname{arg\,min}} \operatorname{stoploss}(X(\theta), \vartheta; \Delta)$$

- This can be seen as a profile method
- We use a nested algorithm
 - 1 First solve for $X(\theta) = \arg \max_{X} \sigma(X, \theta)$
 - **2** Then minimize stoploss($X(\theta), \vartheta; \Delta$) over ϑ
- Advantages:
 - \blacksquare For finding $X(\theta)$ we can use standard solutions (reasonably good)
 - The inner part (1.) allows computationally flexible specifications of MDS method
 - \blacksquare $I_p(X)$ depends directly only on $X(\theta)$
 - Dimensionality of outer problem is usually not very high

Optimization-II

- Difficulties when optimizing over ϑ
 - Inner minimization is very costly
 - For stoploss basically only know function evaluations
 - Estimation of Step 1 may be noisy (premature termination, local minimum)
- This suggests to solve Step 2 with Efficient Global Optimization aka Bayesian Optimization.
- One samples the "best" candidate for evaluation given a surrogate model and the current knowledge.

Optimization-III

- Bayesian Optimization:
 - Choose a (flexible) surrogate model (prior)
 - Evaluate the target function at some candidate values (data)
 - Update the prior with the function evaluations (posterior)
 - Maximize an acquisition function over the posterior surface
 - This suggests a candidate parameter combination
 - Evaluate at candidate and repeat
- We use Expected Improvement for acquisition and Treed Gaussian Process with Jumps to Linear Models (Grammacy, 2007) or Kriging (Roustant et al., 2012) for the surrogate model.

R Package stops

All of this is implemented in the R package stops

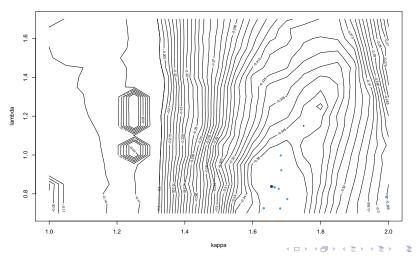
- High level function for STOPS stops(delta,loss,...)
- Prespecified MDS models (argument loss) are strain, SMACOF (smacofSym), sammon mapping, elastic scaling, SMACOF on a sphere (smacofSphere), sstress, rstress, powerstress, Sammon mapping and elastic scaling with powers (powersammon, powerelastic). Planned: Isomap and LMDS
- Optimization with Bayesian optimization (kriging, tgp) and some more (including simulated annealing SANN or a particle swarm algorithm pso).
- Features various c-structuredness indices
- S3 methods: plot, summary, print, coef, residuals, plot3d, plot3dstatic

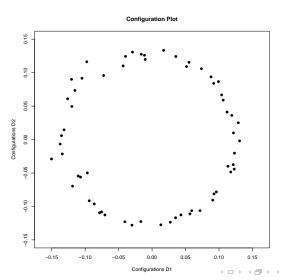
Example: Mental States - I

- Misfit: Power Stress MDS
- Structuredness: C-Clusteredness and C-Manifoldness
- Optimization with treed gaussian process prior with jump to linear models (for 20 steps)

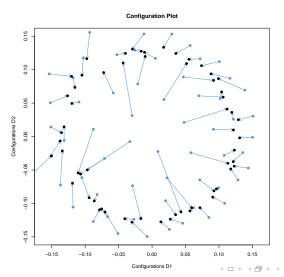
R> res1 <- stops(dis,loss="powermds",theta=c(1,1,1),structures=c("ccluste

Example: Mental States - II

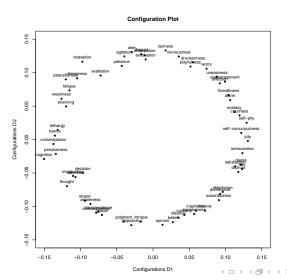




Example: Mental States - IV



Example: Mental States - V



Summary and Outlook

STOPS

 A conceptual and computational framework for hyperparameter optimization in MDS based on structure considerations

Outlook

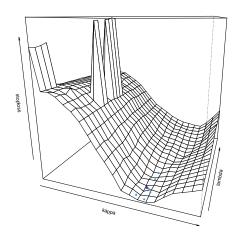
- More models and (perhaps?) more structures
- Extend to other dimension reduction techniques (e.g., the Gifi system)

References

- Gramacy, R. B. (2007). tgp: an R package for Bayesian nonstationary, semiparametric nonlinear regression and design by treed Gaussian process models. Journal of Statistical Software, 19(9), 1–46.
- Reshef, D., Reshef, Y., Finucane, H., Grossman, S., McVean, G., Turnbaugh, P., Lander, E., Mitzenmacher, M., & Sabeti, P. (2011) Detecting novel associations in large data sets. Science, 334, 1518–1524.
- Roustant, O., Ginsbourger, D., & Deville, Y. (2012). Dicekriging, Diceoptim: Two R packages for the analysis of computer experiments by kriging-based metamodelling and optimization. Journal of Statistical Software, 51(1), 1–54.
- Rusch, T., Hornik, K., Mair, P. (2016) Assessing and quantifying clusteredness: The OPTICS Cordillera. Report 2016/1, Discussion Paper Series / Center for Empirical Research Methods, 2016/1. WU Vienna University of Economics and Business. Vienna.
- Rusch, T., Mair, P. & Hornik, K. (in preparation) Structure based hyperparameter selection for Dimensionality Reduction:
 The STOPS framework for Structure Optimized Proximity Scaling.
- Sarmanov, O (1958). Maximum correlation coefficient (symmetric case). Doklady Akad. Nauk SSR, 120, 715–718.
- Szekely, G., Rizzo, M., & Bakirov, N. (2007). Measuring and Testing Independence by Correlation of Distances, Annals of Statistics, 35 (6), 2769àÄS2794.
- Tamir, D.I., Thornton, M.A., Contreras, J.M., & Mitchell, J. P. (2016) Neural evidence that three dimensions organize mental state representation: Rationality, social impact, and valence. PNAS, 113 (1), 194-199.

Backup Slides

Example: Mental States - 3D



Thank You for Your Attention

Thomas Rusch

Competence Center for Empirical Research Methods email: thomas.rusch@wu.ac.at
URL: http://wu.ac.at/methods/team/dr-thomas-rusch

WU Vienna University of Economics and Business Welthandelsplatz 1, 1020 Vienna Austria

License

Please attribute Thomas Rusch, Patrick Mair and Kurt Hornik. Except where otherwise noted, this work is licensed under CC-BY-SA:

https://creativecommons.org/licenses/by-sa/4.0/