COPS and STOPS
Cluster and/or Structure Optimized Proximity Scaling
Outline

1. Problem Motivation
2. COPS: Cluster Optimized Proximity Scaling
 - C-Clusteredness
 - The COPS Procedure
 - COPS Variants
 - COPS Example
3. STOPS: Structure Optimized Proximity Scaling
 - STOPS Framework
 - Structuredness Indices
 - Optimization
 - Package
 - STOPS Example
4. Conclusion and Outlook

This is joint work with Kurt Hornik (WU) and Patrick Mair (Harvard).
Lack of Structure in MDS

- In exploratory data analysis we may look for anything, but find little to nothing.
- E.g., “I’m a Republican, because...” statements (Mair et al., 2014) with MDS on cosine distance between words from co-occurrences.

- Looked for word clusters but have a lack of structure.
Another Example

In MDS this is not an uncommon situation (embedded sparse sphere phenomenon).

Mental States Data: Tamir et al. (2016) investigates how our brain represents the mind of others (social cognition) by correlation of activation patterns of fMRI brain scans.

- For 20 individuals and 60 mental states
- Task was to choose for a given mental state the one out of two situations most likely to induce the state in others
- In supplement the authors invite readers to explore the neural similarity of states directly by means of 2-dim MDS
Methods that provide a mapping from a higher dimensional to a lower dimensional space based on some idea of optimality

Example: Multidimensional Scaling (MDS)

Least Squares MDS utilizes the STRESS loss function

$$\sigma_{MDS}(X) = \sum_{i<j} w_{ij}^* [f_{ij}(\delta_{ij}) - g_{ij}(d_{ij}(X))]^2$$

and minimizes it to find the configuration X

$$\arg\min_X \sigma_{MDS}(X)$$

$d_{ij}(X)$... fitted distances, δ_{ij} ... proximities
$g_{ij}(\cdot), f_{ij}(\cdot)$... transformation functions
w_{ij}^* ... finite weights
Multidimensional Scaling (MDS)

- Provides an optimal map into continuous space \mathbb{R}^M and looks for directions of spread in the low dimensional space (objective 1).
- But we may be interested in some structural idea, e.g., discrete structures of similarity between objects (“clusters”; objective 2).
- MDS does solve objective 1 but not objective 2. The latter is often inferred from the former by how it looks.
- It can happen that what is optimal for objective 1 is not very useful for objective 2.
- One way out: Use transformations so clustering is clearer.
- Often this means that the fit may get worse.
COPS for the Rescue

Our solution to this problem: COPS (Cluster Optimized Proximity Scaling; Rusch et al., 2015a).

- Use STRESS with \(\theta \)-parametrized monotonic nonlinear transformations of proximities and/or fitted distances. e.g., power transformations (powerStress, \(g(d_{ij}(X)) = d_{ij}^\kappa(X) \) and \(f(\delta_{ij}) = \delta_{ij}^\lambda, w^*_{ij} = w_\nu_{ij} \), so \(\theta = c(\kappa, \lambda, \nu) \))

- Use an index of the obtained degree of clusteredness in the configuration (c-clusteredness) to quantify how clustered the result is

- Combine this into a single target function and optimize

- Two versions:
 - COPS-C (Optimize combined loss to get \(X \))
 - P-COPS (Profile method to find \(\theta \))
C-Clusteredness: The amount of clusteredness of a configuration
Index for clusteredness: \textbf{OPTICS Cordillera} (Rusch et al., 2016)

- Employ \textbf{OPTICS} (Ankerst et al., 1999) with metaparameters k, ϵ on the configuration distances. For row vectors x_j of X returns an ordering R of these points, $R = \{x(i)\}_{i=1,\ldots,N}$.

- \textbf{OPTICS} also returns a reachability plot (dendrogram of minimum reachabilities r^*_i of point $x(i)$).

- Ordering and reachability represent the clustering structure. We aggregate that to an index $OC'(X)$ by defining (for metaparameter $q > 0$)

$$OC'(X) = \left(\frac{\sum_{i=2}^{N} |r^*_i - r^*_{i-1}|^q}{d^q_{\text{max}} \cdot \left(\left\lceil \frac{N-1}{k} \right\rceil + \left\lfloor \frac{N-1}{k} \right\rfloor \right)}\right)^{1/q}$$

- It holds that $0 \leq OC'(X) \leq 1$.
The COPS Procedure

Combine the θ– parametrized STRESS, $\sigma_{MDS}(X(\theta), \theta)$ and the OPTICS cordillera $OC(X)$ to cluster optimized loss (coploss):

$$\text{coploss}(X, \theta) = v_1 \cdot \sigma_{MDS}(X, \theta) - v_2 \cdot OC(X)$$ \hspace{1cm} (1)

and $v_1, v_2 \in \mathbb{R}$ controlling how much weight should be given to the individual parts of coploss.

We derive two versions from this loss

- **COPS-C**: $\text{coploss}(X; \theta) = v_1 \cdot \sigma_{MDS}(X; \theta) - v_2 \cdot OC(X; \theta)$
- **P-COPS**: $\text{coploss}(\theta) = v_1 \cdot \sigma_{MDS}(X(\theta), \theta) - v_2 \cdot OC(X(\theta))$ with $X(\theta) := \arg \max_X \sigma(X, \theta)$.
Using COPS to find a configuration

We need to do

\[\text{coploss}(X; \theta) \rightarrow \min_X \]

We use the derivative free heuristic NEWUOA

Works well when initial configuration is near the optimum

Set initial configuration \(X^0 \) to \(\min_X \sigma_{\text{MDS}}(X) \)

Local improvement towards more c-clusteredness for the MDS solution
Profile Version of COPS for hyperparameter selection

We need to do

$$\text{coploss}(\theta) \rightarrow \min_{\theta}!$$

We use a nested algorithm that first solves for $$X(\theta)$$ and then minimizes over $$\theta$$.

- For the inner part, i.e., finding $$X(\theta)$$ standard MDS optimization is used (e.g., majorization)
- The outer part of this optimization problem we use metaheuristics (good experiences with an adapted Luus-Jaakola algorithm (Luus & Jaakola, 1973))
Example: Mental States COPS

- **COPS-C:** `cops(dis,'COPS-C',stressweight=0.9,cordweight=0.1)`

 Call: [1] "[deleted]"

 Model: COPS with parameters kappa= 1 lambda= 1 nu= 1

 Number of objects: 60
 Stress of configuration (default normalization): 0.3671
 OPTICS Cordillera: Raw 10.94 Normed 0.2504
 Cluster optimized loss (coploss): 0.09625
 Stress weight: 0.9 OPTICS Cordillera weight: 0.1
 Number of iterations of Newuoa optimization: 13292

- **P-COPS:** `cops(dis,'P-COPS',loss='powerstress')`

 Call: [1] "[deleted]"

 Model: COPS with powerstress loss function and parameters kappa= 1.853 lambda= 8.987 nu= 0.579

 Number of objects: 60
 MDS loss value: 0.07394
 OPTICS cordillera: Raw 5.315 Normed 0.1217
 Cluster optimized loss (coploss): -0.3079
 MDS loss weight: 1 OPTICS cordillera weight: 3.138
 Number of iterations of ALJ optimization: 134
COPS Mental States - I

COPS-C

P-COPS
COPS Mental States - I

COPS–C

P–COPS
Why Stop with COPS?

We can go further than COPS:

- Other structures might be of interest
- Other transformations might be of interest
- Other dimensionality reduction methods might be of interest

We can rehash ideas from COPS:

- Idea behind P-COPS is rather flexible
- Conceptual and computational framework for hyperparameter selection by structure considerations

- Building blocks: θ–parametrized loss function, structuredness index(es), combination and algorithm for outer optimization.

With MDS-type losses we call this **STOPS** (Structure Optimized Proximity Scaling; Rusch et al., 2017).
In MDS-type dimension reduction (proximity scaling) we have a loss function that measures misfit

\[\sigma(X, \theta) = L(\Delta^*, D^*(X), \theta) \]

with \(\delta_{ij}^* = f_{ij}(\delta_{ij}; \theta) \) and \(d_{ij}^* = g_{ij}(d_{ij}; \theta) \) which we minimize to find the configuration \(X \) given \(\theta \)

\[X(\theta) = \arg \min_X \sigma(X, \theta) \]

- \(X(\theta) \) has some structural appearance (C-Structuredness).
- C-Structuredness changes with different \(\theta \)
We capture \(p = 1, \ldots, P \) structures by indices \(I_p(X(\theta); \gamma) \).

We combine the misfit and the indices to \(\text{stoploss}(\theta) \)

Two STOPS models

- **Additive STOPS**

 \[
a\text{STOP}(\theta, v_0, \ldots, v_P; \Delta) = v_0 \cdot \sigma(X(\theta), \theta) + \sum_{p=1}^{P} v_p I_p(X(\theta); \gamma)
 \]

- **Multiplicative STOPS**

 \[
m\text{STOP}(\theta, v_0, \ldots, v_P; \Delta) = \sigma(X(\theta), \theta)^{v_0} \cdot \prod_{p=1}^{P} I_p(X(\theta); \gamma)^{v_p}
 \]

\(v_0 \) ... stressweight (redundant), \(v_1, \ldots, v_P \) ... structuredness weights, \(\gamma \) ...

(optional) metaparameters for structuredness indices
For **hyperparameter selection** we then need to find

$$\arg \min_{\vartheta} \text{aSTOPS}(\theta, v_0, \ldots, v_k; \Delta)$$

or

$$\arg \min_{\vartheta} \text{mSTOPS}(\theta, v_0, \ldots, v_k; \Delta)$$

where $\vartheta \subseteq \{\theta, v_0, \ldots, v_k\}$. Typically ϑ will be a subset of all possible parameters here (e.g., the weights might be given *a priori*, so $\vartheta = \theta$).
C-Structuredness Indices:

- They capture the essence of a particular structure in a configuration.
- They should be numerically high (low) the more (less) structure.
- They are solely a function of X (not of Δ and σ).
- They are bound from above and below, i.e., have unique finite minima and maxima.
- Reasonably regular in their behaviour as a function of the c-structuredness.
- They quantify what a human may perceive in the configuration.
C-Association: Pairwise nonlinear association between principal axes (pairwise maximal maximum information coefficient; Reshef et al. 2011)

C-Clusteredness: A clustered appearance (normed OPTICS Cordillera)

C-Complexity: Complexity of the functional relationship between any principle axes (pairwise maximal minimum cell number; Reshef et al. 2011)

C-Dependence: Random vectors of projections onto the axes are stochastically dependent (distance correlation; Szekely et al., 2007)

C-Functionality: Pairwise functional, smooth, noise-free relationship between axes (mean pairwise maximum edge value; Reshef et al. 2011)
Structures and Indices - III

- **C-Linearity**: Points lie close to linear subspace (maximal multiple correlation)
- **C-Manifoldness**: Points lie close to a smooth sub manifold (maximal correlation; Sarmanov, 1958)
- **C-Nonmonotonicity**: Deviation from monotonicity of axes (pairwise maximal maximum asymmetry score; Reshef et al. 2011)
- **C-Ultrametric**: How well is the overall distance variability explained by an ultrametric (VAF and DAF)
- **C-Randomness**: How close to a random pattern (under some model) is the configuration (not clear yet)
- **C-Faithfulness**: How accurate is the neighbourhood of Δ^* preserved in D^* (adjusted M_d index of Chen & Buja, 2013)

Any other ideas?
We need to find

$$\arg \min_{\vartheta} \text{stoploss}(X(\theta), \vartheta; \Delta)$$

- We use a nested algorithm
 1. First solve for $X(\theta) = \arg \max_X \sigma(X, \theta)$
 2. Then minimize $\text{stoploss}(X(\theta), \vartheta; \Delta)$ over ϑ

- Advantages:
 - For finding $X(\theta)$ we can use standard solutions (reasonably good)
 - The inner part (1.) allows flexible specifications of dimensionality reduction method
 - $l_p(X)$ only depends on $X(\theta)$, not on $\sigma(X)$
 - Dimensionality of outer problem is usually not very high
The difficulty lies in how to optimize over ϑ

- Inner minimization is costly
- Stoploss is a hard function to optimize (we basically only know function evaluations)
- Estimation of Step 1 may be noisy (premature termination, local minimum)
- We need a way to solve step 2 with a global optimization
 - only knowing target function values at some parameters
 - as little function evaluations as possible
 - the possibility that the function evaluations are noisy
This can be done with Efficient Global Optimization (Bayesian Optimization).

- **Black box** global optimization if target function is costly
- The surrogate model allows to **deal with noise**
- Works well in **low dimensions**

Strategy is popular for **hyperparameter tuning** in machine learning
The idea behind this approach

- Choose a *(flexible) surrogate model* *(prior)*
- Evaluate the target function at some values *(data)*
- Update the prior with the function evaluations *(posterior)*
- Maximize an acquisition function *(e.g., expected improvement (EI)) over the posterior surface*
- Maximal EI suggests a *candidate parameter combination*
- Evaluate at candidate and *repeat*

One samples the “best” candidate point *given the current knowledge and model.*
We use two types of priors:

- **Simple Kriging model (Gaussian Process) with covariance kernels** (Roustant et al., 2012)
 - Squared Exponential (“Gaussian”; very smooth)
 - Matern 5/2 and 3/2 (smooth)
 - Exponential (Ohrnstein Uhlenbeck process; very rough)
 - Power exponential (rough, but less so than OU)
 - Appears good for inner optimization by gradient methods or SVD

- **Treed Gaussian Process with Jumps to Linear Models** (Grammacy, 2007)
 - Nonstationary process by partitioning
 - Allows flexible combination of different GP, piecewise linear trends, jumps
 - Appears good for inner part estimated with majorization
All of this is implemented in the R package **stops**

- High level function for COPS **cops(delta,variant,...)**
- High level function for STOPS **stops(delta,loss,...)**
- Prespecified MDS models (argument **loss**) for STOPS and P-COPS are **strain**, SMACOF (**smacofSym**), **sammon** mapping, **elastic** scaling, SMACOF on a sphere (**smacofSphere**), **sstress**, **rstress**, **powerstress**, Sammon mapping and elastic scaling with powers (**powersammon**, **powerelastic**)
- Planned for STOPS also are Isomap, t-SNE, Diffusion Map
- Optimization with Bayesian optimization (**kriging**, **tgp**) or **ALJ** or simulated annealing (**SANN**) or a particle swarm algorithm (**pso**).
- Features various structuredness indices
- S3 methods: **plot**, **summary**, **print**, **coef**, **residuals**, **plot3d**, **plot3dstatic**
Example: Mental States - I

- Badness of fit: **Power Stress MDS**
- Structures: **C-Clusteredness** and **C-Manifoldness**
- Optimization with **treed gaussian process prior with jump to linear models** (for 20 steps)

```r
R> res1 <- stops(dis, loss="powermds", theta=c(1,1,1), structures=c("cclusteredness","cmanifoldness"), optimmethod="tgp", itmax=20, lower=c(1,0.7,1), upper=c(2,5,1.1))
R> res1

Call: stops(dis = dis, loss = "powermds", theta = c(1, 1, 1), structures = c("cclusteredness", "cmanifoldness"), optimmethod = "tgp", lower = c(1, 0.7, 1), upper = c(2, 5, 1.1), verbose = 5, initpoints = 10, itmax = 20)

Model: additive STOPS with powermds loss function and theta parameters= 1.677 0.826 1

Number of objects: 60
MDS loss value: 0.2539
C-Structuredness Indices: cclusteredness 0.2588 cmanifoldness 0.9664
Structure optimized loss (stoploss): -0.3587
MDS loss weight: 1 c-structuredness weights: -0.5 -0.5
Number of iterations of tgp optimization: 20
```
Example: Mental States - IV

Configuration Plot

Configurations D1

Configurations D2
Example: Mental States - IV

Configuration Plot

- Example: Mental States - IV

- Configuration Plot

- Configurations D1

- Configurations D2

- relaxation

- awe

- laziness

- exaltation

- worry

- hallucination

- cognition

- distraught

- contemplation

- madness

- planning

- creativity

- decision

- contemplation

- cognition

- stupor

- thought

- judgment

- belief

- inspiration

- contemplation

- subordination

- decision

- contemplation

- cognition

- stupor

- thought

- judgment

- belief

- inspiration

- contemplation

- subordination
COPS

- We presented a new dimension reduction technique to obtain clustered configurations: COPS
- Two versions (COPS-C and P-COPS)

STOPS

- A framework for hyperparameter optimization in MDS based on structure considerations
- Generalization of P-COPS
Outlook

For STOPS

- More models and more structures
- Extend to general dimension reduction techniques (e.g., the Gifi system)

Beyond that

- We are working on a general framework for directly obtaining structured configurations by penalization
- Very much at the beginning
References

Optimization Details

- Sample $\theta^{(i)}$ from within t-orthotope $[l, u]^t$ with l, u are lower, upper boundaries
- Set d to be the length of the search space
- Repeat until termination (accd, maxiter, acc)
 - Pick $a^{(i)} \sim U_t(-d, d)$
 - Set $\theta^{(i+1)} \leftarrow \theta^{(i)} + a^{(i)}$
 - If $\text{coploss}(\theta^{(i+1)}) < \text{coploss}(\theta^{(i)})$ set $\theta^{(opt)} = \theta^{(i+1)}$, else set $d = d \cdot s$

Here (this is the customized part):

$s = o \cdot \frac{m+1-i}{m}$,

$m = \min \left(\left\lfloor \frac{\log(accd) - \log(\max(u-l))}{\log(o)} \right\rfloor, \text{maxiter} \right)$ and $0 \leq o \leq 1$.
Example: Mental States - 3D
Thank You for Your Attention

Thomas Rusch
Competence Center for Empirical Research Methods
email: thomas.rusch@wu.ac.at
URL: http://wu.ac.at/methods/team/dr-thomas-rusch

WU Vienna University of Economics and Business
Welthandelsplatz 1, 1020 Vienna
Austria
License

Please attribute Thomas Rusch, Patrick Mair and Kurt Hornik. Except where otherwise noted, this work is licensed under CC-BY-SA:

https://creativecommons.org/licenses/by-sa/4.0/